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DEFORMATION OF A SUPPORTED SHORT CYLINDRICAL
SHELL OF ALUMINUM ALLOY UNDER
INTERNAL PRESSURE
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Abstract—In order to analyze the deformation due to internal pressure of thin cylindrical shells of materials
having nonlinear stress—strain relations, fundamental equations were derived by using Kirchhoff’s hypothesis
and introducing a parameter showing the effect of compressibility of the material. The equations were applied
to a supported short cylindrical shell of aluminum alloy under internal pressure. In order to investigate the
validity of the assumptions, the analytical results were compared with experimental results.

The analytical results of the axial strain components on the outer and inner surfaces are remarkably different
from each other. The complicated variation of the distribution of axial strain on the inner surface with increase
of pressure is attributed to the nonlinearity of the deformation, and such a trend was verified clearly by the
corresponding experiment.

NOTATION

a,2h, 2l dimensions of circular cylindrical shell (Fig. 1)
Ay, dy.dy,d; material constants {equation (26))
a;, b, (i,j=1,2,3) matrix elements defined by equation (29) (Appendix II)
¢ parameter characterizing material compressibility
[ unit elongations of middle surface
é effective strain
€y volumetric mean of e
E\, B w,wy variable parameters defined in equation (22)
I, 15,15 symbols defined by equation (25)
M., M, bending moments per unit length of middle surface
p internal pressure
Q. shearing force per unit length of middle surface

= —dw/dx gradient of radial displacement [equation (19)]
T.. Ty membrane forces per unit length of middle surface
u,w displacements
x,0,z,0orx; (i = 1,2,3) orthogonal coordinate system (Fig. 1)
o coeflicient of volumetric strain
oy, g changes in curvature of middle surface
0, (i,j =1,2,3) Kronecker’s symbol
£ mean normal strain
£, ggor g (i,j=1,2,3) strain components
o mean normal stress
a effective stress

Q

x> 00, Tuzs Tg, T, OT 0 (i,j = 1,2,3)  stress components

1. INTRODUCTION

DEFORMATION analyses of cylindrical shells of finite length subjected to internal pressure
have been carried out in detail in elasticity (1]. In plasticity however, only limit analysis has
been applied for such problems [2, 3]. On the other hand, though limit analysis may be
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available for materials having a discrete yield point such as mild steel, it cannot be applied
in a sufficiently wide range of deformation for a cylindrical shell of a material with a non-
linear stress—strain relation.

Therefore, in the present paper, fundamental equations are derived to analyze the
axisymmetric deformation of a cylindrical shell under internal pressure for materials having
non-linear stress—strain relations. In the analysis, Kirchhoff’s hypothesis is used under
the assumption that the shell is thin. Moreover, Hencky’s equation is used for the plastic
stress—strain relation, and, for considering the effect of compressibility of the material, a
parameter related to the mean value of effective strain over the whole region subjected to the
assigned pressure is introduced. The non-linear stress-strain relation of the material
obtained by a calibration test is approximated by a polynomial of four terms.

Since the above mentioned assumptions are approximations to simplify the analysis,
the fundamental equations derived from them must be discussed with respect to their
applicable ranges by comparing them with the corresponding experimental results. For
this purpose the equations are applied to the deformation of a supported short cylinder of
aluminum alloy subjected to internal pressure.

2. STRESS-STRAIN RELATION OF COMPRESSIBLE MATERIALS [4, 5]

In restricting the range of deformation to be small, Hencky’s relation may be assumed
to hold between the components of the stress and strain deviators,

) 26 o )
Gy — 0By = ?Z(sij~eéf,), (i,j=1,273) (i

where
o = 304, e = e,
- S\ 5 2 o ST 5 \Th
g = \;’/%[(Uz‘j"“aéij)(o—ij""a‘)ij)];- € = V/I[(bij—wij)(bij“”“f‘)ij)]”—

It is also assumed that the following relation holds between the mean normal stress and
strain

& = w0, (2}

where the coefficient of volumetric strain « is constant.
Substituting equation (2) into equation (1), the stress components are obtained as

follows;
oy = Ale)e;; + B(e)eo,;, {3)
where

Afe) = 26/3e, Bie) = »i«(»(i — 260/3é),

or, setting now
&) = 25a/38, 4
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they are represented in the following form;

} 1—c(e)
gij = A(e)[a,-j—k—?(é—)—sé,-j]. (3)

The Kirchhoff hypotheses, also known as the Kirchhoff-Love hypotheses, are fre-
quently applied to the theoretical analysis of the deformation of thin plates and shells.
By employing the hypotheses that the transverse normal stress can be neglected (¢33 = 0)
in comparison with the other stress components (the x; and x, coordinate curves lie on the
middle surface of the plate or shell and x; is perpendicular to it), the transverse normal
strain, the volumetric strain and the effective strain respectively, are formally expressed
by using equation (5) as follows,

o@)—1 3cte)
= = e —— > 6
2 = pgaien teh 3= g aiEn e ©
2 [1+c@)+c%e
5 = J}[—éz)—c(—()(en +&5,)? 811322+8%2+8%3+8§1] . (7

Substituting equations (6), equation (5) becomes

| 2+c(e) X —c(é) _ 2+c(e) 1—c(e)
F“%Hmwﬁumw4 ”rﬂilnwzuull

@)

o33 =0, o = A(ee,, 623 = A(e)e,s, 031 = Al@)es;.

The value of c(é) is defined by equation (4) and can be determined experimentally, for
example, by a uniaxial tension test (Fig. 7). It is apparent from Fig. 7 that ¢(e) decreases
with increase of e. Since the first term in the right hand side of equation (7) contains c(e)
dependent on &, equation (7) does not define é explicitly. On the other hand, the result in
Fig. 7 and the definition (4) indicate that the value of ¢(é) is small compared with unity and
that it vanishes for an incompressible material.

Since the influence of a small variation of ¢(e) on the deformation does not seem to be
severe, for convenience of analysis, a constant value defined in the following, corresponding
to each external load, for the value of ¢(e) entered in equations (7) is used. The average
value of & over the deformed body, e, = {é dv/[ dv, is considered to represent the deformed
state under each external load. The value of c(e) obtained from Fig. 7 by using é.q, c(é = &),
may be considered as a constant corresponding to the prescribed load. Hereafter it is
written as ¢ instead of c¢(e).

Since the above approximation is, however, based on the average distribution of &
over the entire volume, it is noted that it does not take account completely of the local
effect of a steep change in strain distribution and concentrated strain.

The considerations described above were applied to the analyses of the deformation of
circular plates under lateral load and the analytical results agreed fairly well with the
corresponding experimental ones [4,5]. Since the deformation of thin walled circular
cylindrical shells subjected to internal pressure may also be treated as a plane stress problem,
in this paper, it is analyzed in a similar manner to the previous papers [4, 5].
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3. FUNDAMENTAL EQUATIONS

As shown in Fig. 1, a coordinate system x, 6, z is considered at the center on the middic
layer of the cylindrical shell under internal pressure. The shell is assumed so thin that «
state of plane stress may be considered,

g.=1,. =0

The stresses 1.4 and 7,4 vanish on account of geometrical symmetry. The remaining stresses
are expressed by using equations (8) as follows:

" 26 2+(:8 +l+(,‘ ) - 26f 2+¢ +1—(‘ _
= | et |, = —|-—% e |-
| 1+2c 12 % T e T2 T T2 )
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F16. 1. Coordinate system. Cylindrical shell under internal pressure.

By using the components of bending moment M, My, membrane force T, T, and shear-
ing force Q,, the equilibrium conditions of the shell for small deformations are expressed as

dT,/dx = 0. (10)
dQ,/dx + Ty/a = p, (1
dM jdx—Q, = 0. (12)

From the components of unit elongation e¢,, ¢, and the change of curvature «, of the
middle surface of the shell, with another assumption of Kirchhoff, the components of
strain are expressed as follows:

£, = €, + 2%, Ly = €p. (13)
The change of curvature in the circumferential direction may be neglected in the smalil
deformation theory:

With the use of the radial displacement w and the axial displacement v, the values ¢, ¢y
and a, are expressed as [1]

e = dujdx, e = —wa o = —diw/dx® (15)
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Eliminating w from equation (15), the following relation is obtained :
dZey/dx? = a,/a. (16)

Since the shear stress 1., is usually neglected, and the shear force Q. cannot be expressed
as an integration of the stress through the thickness, the equation

M Jdx* = p—Tya, (17)

which is obtained by eliminating Q, from equations (11) and (12), is used for the analysis.
However, in that case, it is necessary to consider a system of second order differential
equations, by differentiating equation (10) as follows:

d2T/dx? = 0, (18)

to solve the fundamental equations numerically. However, as shown later, since the com-
ponents of the bending moment and the membrane force contained in equations (17) and
(18) are expressed by the components of strain, it will be very cumbersome to differentiate
each of the components twice with respect to x. Moreover, the numerical solution of a
system of second order differential equations is much more difficult to obtain than that of
a system of first order equations. The following method is, therefore, intended to avoid such
a difficulty. In the method, the shear force Q. is considered as a parameter related to x, and
another parameter s is introduced as follows:

s = —dw/dx. (19)

By using the parameter s, the compatibility condition of strain (16) is divided into two
differential equations of first order

dey/dx = s/a, (20
ds/dx = a,. (21)

Consequently, the system of fundamental equations consists of five equations, (10)12),
(20) and (21), and these are all first order differential equations with respect to x.

As in the previous paper [5], the components of strain e,, ¢, and those of change of
curvature a,, o are transformed by using the parameters E,, §, w; and w, as follows

€x _ 2El [ /3

el = ? cos(w; +7/3)+ccos wy],

o 28E .
a:} = \/3hl [cos(we F 7/3) + ¢ cos wg].

In the above relations, as o, may be considered as zero identically for small deformations,
it follows that:

cos(wy +7/3)+c cos wg = 0. (23)
Therefore, the value of w, may be found as a constant for the assigned pressure, because

the value of ¢ may be obtained as a constant for each assigned pressure. Then, from
equation (14), e,, e and «, may be considered as functions of E,, B and w,.
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As usual, the components of the bending moment and the membrane force are obtained

by integrating through the thickness the components of stress and its moment. By using
equations (9) and (22), these values are expressed as follows:

T f = +3Ehisin(w, + /3, + f sin (we + /3],
7}

i
M. ) L . (24

M= +3E b7 [sin(w +7/3); + f sin(w, + 1/3) 5]

@
where
1 ] { ~h l nh

I, =~ 5/e)dz I, = — 5/e)z — Fléyz2 dz 35
T GEI Ay ezan L= @ate o

The non-linear stress-strain relation of the material obtained from calibration test is
approximated by the following polynomial:

0 = Ugl+0a,0% +u,8> +a,8 . {26)

The concrete form of equation (24) is expressed in detail in Appendix 1. By integrating
equation (10), the following relation is obtained;

T, = const., (27

where the value of the integration constant is to be obtained from the boundary conditions.
Then, the three parameters E,, f and v, are not independent of each other and the func-
tional relation may be selected as follows;

w; = wi{Ey, f), (28)

where the concrete form of the relation, which is to be found by solving the transcendental
equation (27), is difficult to express formally. Then, E;(x) and f(x) may be considered as the
independent parameters which are variable with respect to x.

By substituting equations (22) and (24) into equations (10), (12) and (20), the system of
fundamental differential equations is expressed as

'an ey axs‘\ dEx/dX: ;b;
ajy azz az], dﬁ/dx = bl . (29)
\u3 @3y ays) (do,/dx b3,

where the expressions for the elements of the square matrix {g;;) and those of the column
matrix (b;) on the right hand side are rather complicated and are shown in Appendix 11.
As the value of ¢ contained in equation (4) depends on the deformed state as well as the
characteristics of the material, it is difficult to estimate in advance. We now employ a
method used in previous papers [4, 5]. The method consists of three steps. Firstly, the
fundamental equations are solved for the assigned value of p under the assumption of ¢ = 0.
From the result, the distribution of effective strain is found over the shell, and its volumetric
mean value &, is estimated. By assuming that &, represents the state of the whole shell,
the corresponding value of ¢ for the assigned value of p is obtained from the relation between
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¢ and & of the material obtained by calibration test under uniaxial stress state. By repeating
the numerical integration with the use of ¢ just obtained, the deformation analysis of the
shell may be completed.

4., NUMERICAL EVALUATION AND ITS RESULTS

The values of the constants a,, a,, a, and a, contained in the polynomial stress-strain
relation (26) were determined by calibration tests using uniaxial tension specimens from a
cylindrical shell of aluminum alloy in the manner discussed in Section 3(a), and they have
the following values:

ap = 1-1139x10%,  a; = —2877x10°%,  a, = 27784 x 108
as; = —9-541 x 10" (kg/mm?).

The fundamental equations were applied for a supported short cylindrical shell with
axially movable ends having ratios a¢/h = 40 and {/a = 0-5. The boundary conditions are
expressed as follows:

M,=T,=w=0 at x==/. (30)

The results of the evaluation are shown in Figs. 2-6 and Table 1. Figure 3 shows the
components of the bending moment M,/h? and My/h?, where the location of the maximum
value lies within the range 0-6 < x/I < 0-8. In the case of linear elasticity, when the dis-
tributions vary proportionally with pressure, the location of the maximum value does not
move with pressure. However, according to the solution obtained here, the maximum
moves towards the center with increase of pressure. Moreover, the maximum value of
M, /h* decreases with increasing pressure for pressures higher than 70 kg/cm?, while that
of Mg/h? increases with increase of pressure. These trends are quite different from the cor-
responding elastic solution.
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F1G. 2. Distributions of circumferential component of membrane force.
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Fic. 3. Distributions of axial (solid line) and circumferential (chain line) components of bending moment.

Though the values of M /h* and M,/h? are less than that of T;/h, since the ratio of maxi-
mum value of |M,/h% to that of |Ty/h| is about 0-16 for p = 60 kg/cm? for example, the
former values are not negligible in comparison with the latter as in the membrane theory.

Figure 4 shows the radial and axial displacements of the cylindrical shell. In linear
elasticity, two different distribution modes of w have been recognized according to a
parameterJ/[3(1—v?)],/(I*/2ah), which contains the Poisson’s ratio v and the geometry of
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F1G. 4. Distributions of radial (solid line) and axial (chain line) displacements.
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FiG. 5. Distributions of axial strain components on inner (solid line) and outer (chain line) surfaces.

the cylinder [1]. That is, a mode in which the maximum value of w appears at the center
x = 0 corresponds to the shorter cylinder, and another mode in which the maximum value
of w appears not at x = 0 but somewhere distant from the center corresponds to the longer
ones. As the ratio I*/ah of this example belongs to the former mode in elasticity, as shown in
Fig. 4, a mode corresponding to the shorter shell in elasticity was obtained also in the
analysis using a non-linear stress—strain relation.

Figure 5 shows the axial strain components on the inner surface z = h and the outer
surface z = —h, where a remarkable difference can be recognized between them. Moreover,
the distribution on each surface varies strikingly with increase of pressure. These effects
are the consequence of bending action.

5. EXPERIMENT

S(a). Material of specimen

Thealuminum alloy used for the specimen has the chemical components and mechanical
properties shown in Table 2, and the stress—strain relation and the relation between the
parameter ¢ and the effective strain as shown in Fig. 7. The cylindrical specimen was
prepared from the raw cylinder with outer diameter 270 mm and wall thickness 10 mm.
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FiG. 6. Distributions of circumferential strain component.

For finding the stress—strain relation of this material, the uniaxial tension specimens as
shown in Fig. 8 were cut out in the circumferential and axial directions from the raw
cylinder. Moreover, as the specimen in the circumferential direction cannot be cut from the
raw cylinder as it is, it was prepared by the following procedures. The arched strip with arc
length of about 170 mm as shown by a fine line in Fig. 8 was cut out first. The central part
of 50 mm length was fixed with a vice together with the closely fitted guards on both sides,
and its ends were stretched out as shown by the dashed line. The specimen was cut from the
piece obtained in that manner. The results of calibration tests performed with two speci-
mens each in both directions are shown in Fig. 7. As shown in Fig. 7, the stress—strain rela-
tions found in the axial and circumferential directions deviated from each other within the
order of 5 per cent in the plastic range. Therefore, the material may be assumed as almost

TABLE 1. VALUES OF £, f§ AT x = 0 AND THE PARAMETER ¢

plkg/cm?) 25 50 60 70 80 85
Incompressible Ejx-0,x 10> 0498079 121890 166242 2:37934 430637 555145
(c=0) Bic-on 0-066223  0-119073  0-138546 0165323  0-232753 0255879
8oy % 10° 450 1030 1380 1930 3320 4140
¢ 0-270 0-270 0-262 0-235 0-182 0-163
Compressible Elx=0yx10° 0490412 121179 1-65583 2-36525 4-29263 575562

(c #0) Bix=or 0055473 0077519 0094713  0-125628  0-195964  0-196902
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TABLE 2. CHEMICAL COMPONENTS AND MECHANICAL PROPERTIES OF MATERIAL

Chemical components

(%
Cu Si Fe Mn Mg Zn Cr Ti Al
002 0-08 019 0-66 4.57 003 022 <001 R

Mechanical properties

Proof stress Tensile strength Flongation
(kg/mm?) {kg/mm?) (%)
16-1 339 20-3
25 — ; : )
!
£ 20 ; 04
f ——
%, G-& S
x P Experimental
(5l e P ol 'direcﬁon)A._J 03
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b % direction) It
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o >~ _0'4.139”0; 238??:(!0 e" ; 02
T~ r2784x1087~ 954ix10' €
/ c-& T
——
5 = Ql
-3
o] 2 4 G 8 10x10

e
FiG. 7. Stress—strain relation and relation between the parameter ¢ and the effective strain.

isotropic and the average relation shown by the thick curve may be substituted instead of the
two fine curves. The stress—strain relation expressed by the polynomial with the above
mentioned values a, to a; coincides with the averaged curve almost completely.

5(b). Cylindrical shell specimen
The cylindrical shell specimen with outer diameter 269 mm, thickness 2k = 6.5 mm
and length 134 mm was prepared from the raw cylinder by fine turning of both surfaces.

- 160 —
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© ¢
L o
L—————-—-——/ ~———d
f— 50 — Circumferential tensile
________________ / specimen
E ~
= — - =¥
iy
/7 Axial tensile specimen
e/
Sp
Y

Fic. 8. Uniaxial tension specimen.
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As the parts of 1.5 mm wide at both ends of the cylinder are lapped over by the supporting
circle (Fig. 9), the effective length 2/ of the specimen becomes 131 mm. Then, the specimen
has the mean diameter 2a = 262-5mm and the ratios a/h = 40 and /v = 0-50 corre-
sponding to the values used in the above calculation.

S(c). Experimental apparatus

The experimental apparatus used is shown in Fig. 9, where both ends of specimen
are supported with the circles inside the thick circular disks of mild steel joined together
with 16 bolts. The circular disk has sufficient rigidity not to show any visible deformation
under the applied pressure. The inner diameter of the supporting circle was finished as
precisely as possible. To keep the distance between the two disks precisely equal to the
effective length of the specimen, the central part of the bolt which is equal to the effective
length was finished somewhat thicker with sharp steps at both of its ends. The cylinder
was subjected to oil pressure from inside, and the pressure was measured with a Bourdon-
type pressure gauge.

Fh ]
am/ Zh
% 7 A g 2
|
o
< T <) [ SO I
H oo e e ‘269 FrS— [
LAlumirium cylindrica o (%)
shell TN
! 7 O Ring M| L % §
S ey
4 T s V77X &
NNOTAV 7777 AV e g
% e i s s I P £y ) fre)
sy, g LA L 1 i
U % Wil
! ‘=T=“* Qil pressure
; ;,.4 .- S e 3204’. -~ .
%-,,, O S 4oo¢_n e - - et

FiG. 9. Experimental apparatus.

Correct support of the specimen is most important on the apparatus. Therefore, the
length of overlapped parts at both ends of the specimen with supporting circles were
designed somewhat longer.

5{(d}. Experimental procedure and its result

For measuring the components of strain on both surfaces in the axial and circumfer-
ential directions, wire resistance strain gauges with gauge length 10 mm and grid width
2 mm were attached at the points corresponding to x/I = 0, 0-2, 0-4, 0-6 and 0-8 on both
surfaces. As the strain components which are to be measured by these gauges correspond
to the mean value of the distribution within 10 mm in the axial direction and within 2 mm
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in the circumferential direction around the above-mentioned points, the analytical values
corresponding to them are to be mean values within the ranges shown with thick line
segments on the abscissa in Figs. 5 and 6.

As the value of w was extremely small, it was measured by dial indicators with minimum
graduations of 0-001 mm at the location corresponding to x/I = 0, 0-25, 0-50 and 0-75.
Although the value of w at the supported ends was supposed not to exist, it was difficult
to avoid very slight clearances between the specimen and the supporting circle. Accordingly
the dial indicators were arranged also there.

Figures 10-13 show the results obtained by the experiment where various small circles
represent the experimental values and the solid curves show the corresponding analytical
results.

6. DISCUSSION AND CONCLUSIONS

6(a). Radial displacement

Since the experimental values of radial displacement at the supported ends due to
slight clearances are far smaller than the corresponding values at other positions of the
specimen, the experimental value of w at each measuring point was determined by sub-
tracting the value at the support from the corresponding measured values. Figure 10
shows the relation between the values determined above and the pressure. In this figure,
these values agree very well with the corresponding analytical results in the range of
p < 65 kg/cm?, and the difference between them becomes fairly large thereafter. On the
other hand, according to the relation ¢ = ~w/a, the radial displacement has a close
relation with the value of circumferential strain component &,. As shown in Fig. 13, how-
ever, the analytical and experimental values of & at each measuring point have a fairly
good agreement with each other in the range of p > 65 kg/cm?. Accordingly the difference
between results in Fig. 10 should be attributed to the experimental error in the measurement
of radial displacement.

o

g -2 £ xperimental
= o X/1=0 <
) 025

-09

Theoretical

o 20 40 60 80 100

P kg/cnf
FiG. 10. Relation between radial displacement and pressure.
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In the case of a circular plate under lateral load [5] made of almost the same material
as the present specimen, the comparatively clear distinction between linear clastic and
strain hardening plastic ranges shown in the results of calibration tests of the material
could not be found in the relation between deflection and load. In the present results,
however, the distinction is fairly clear in the relation between radial displacement and
pressure. This may be attributed to the difference of stress distribution modes of both cases.
That is, though the bending stress is far larger than the membrane stress in the case of a
circular plate, the membrane stress is far larger than the bending stress for a cylindrical
shell. Therefore, the strain hardening plastic range in the case of a plate appears on both
surfaces for a small amount of load and the effect of hardening appears gradually. in the
cylindrical shell, due to the large value of membrane stress, the stress distribution through
the thickness is more uniform and the stress state through the thickness of the shell changes
uniformly for larger value of pressure.

6(b). Strain components

As shown solid lines in Figs. 11 and 12, the relations between the axial strain com-
ponents and the pressure at measuring points on the inner and outer surfaces arc different
from each other due to the effect of bending action and non-linearity of deformation.
In order to grasp clearly such a complicated difference in these trends for the corresponding
experiment, more measuring points of strain components were selected than in the case of

S BXIQ e R R
| ‘ ' 002
|
-4 t - Experimental = ! -
¥ o %x/1=0 |
N . 8% |
o ® 3
v E 06 )
-3 o8 ! -
|
er o Theoretical , 08
x/1=08 -,
06 .
0.4
- i 02 R
Q 20 40 60 80 100

P kg/cmf

Fic. 11. Relation between axial strain component and pressure on inner (= = #) surface.

radial displacement. The solid curves in Fig. 13 show the relations between the circumfer-
ential strain component and pressure at the same points, and there is no difference on
either surface from the assumption in the analysis. The various small circles show the
experimental results at the measuring points, which are the mean values of strain distribu-
tion near the point on both surfaces, and they agree well with the corresponding analytical
results.
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FiG. 12. Relation between axial strain component and pressure on outer (z = — k) surface.

In Fig. 11, though the sequence of absolute values of axial strain components on the
inner surface (,), -, are x/I = 0-6, 0-4, 0-8, 0-2 and 0 in the range of p < 57 kg/cm?, it varies
thereafter and becomes as x/I = 0, 0-2, 0-4, 0-6 and 0-8 for p > 75 kg/cm?. This was corrob-
orated very well by the corresponding experimental result as shown in Fig. 10.

In shell theory, assuming that the ratio a/h = 40 corresponds to a sufficiently thin shell,
the result obtained by the membrane theory is applied. However, in the shorter cylindrical
shell mentioned above, as shown in Figs. 11 and 12, it is confirmed clearly from the
analytical and experimental results that large difference arises between the axial strain
components on the outer and inner surfaces due to the effect of bending action.
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6 [ - @ o8 — 71~ l
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FiG. 13. Relation between circumferential strain component and pressure.
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6(c). Effect of compressibility of material to the analytical result

In Fig. 13, the analytical result at x/I = 0, in which the material is assumed as incom-
pressible, is also entered with a dashed line. As the value of w is very small and the errors
arising from measurement and supported ends are apt to affect the experimental resuli,
the comparison may be made more easily on the strain component ¢, instead of w. Though
the experimental value of ¢, corresponds to the mean value in the range of 2 mm, as shown
in Fig. 6, the strain distribution in this range may be considered as almost uniform. As
shown in Fig. 13, the agreement between the experimental results and the solid curve i
very good except where the dashed curve deviates to the lower side from the experimental
results.
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APPENDIX
In the appendices, the following symbols are used for simplicity.

SQ == Sin Wg, CO = COS tlg, SI = §in Wy, (wl = COS Wy, CIO = COS(U}I”(})()),
S1o = sin(w; — wo),

Sp() . ¥ CpO n Spl . Fid
= = = 4 = 4
Smg} Sln((ﬂg + 3), Cmo COS| tp 3 5 Sm X Sy 1 3

C
C,:i} = cos(w, ig)

L = log[{B +cos(w, —we)+ F}/{ — f+cos(w; —me)+F_ R

F3

2 } = | +2p cos(w; — we)+ B>
-1
Appendix 1

2

1 E . )
T. = %h [2001‘:15;“ +7§a1“ﬁ1‘{%spo(Fi’“F§t)+(Spt — CyoSpo)(BFL +F_y)
v

+CrolFy — F 1)+ SToL)} + 302 EH{3%(S)1 +2C108,0) +Sp1} +¥a3EN{S,(1

+3pA1+2C0) +%ﬁ4)+4325,,ocm(%+%52)] ,
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M, =%K°E, [’2560/33,;0 +— \/3 {Iﬁspo(F3 +F2 )+ M~ F2)(2S,1 —38,0C10)
~{5,:Cio “%Sp0(5c%0“ DVB(Fy + F- 1)+ CiolFi —F- )+ S{oLl)} +§a2E%6{%ﬁ2Sp0
+ 38,0 +25,1C10) +3a;3E1P{4S,1C 105+ 3D + S,0(3 +38%(1 +2C30) +%ﬁ4)}] .

The representations of T and M, may be obtained by substituting —S,,0, — Cio, — Sm:
and —C,, instead of Sy, Cp, S, and C,; in the corresponding representations of T,
and M,.

Appendix 11
ay; =2 [aospx +\/3 {ESpO(FS F2)+(S,— S,0C1)(B(Fy +F_ )+ Co(Fy—F_y)
StoL)} +4a,EH{S,1 68 + 1) +3B25,0C 10} +5a3EH{S, (1 +3B7(1 +2C30) +4BY

+4ﬁzS,,oCm(%+éﬁz)}] ,

E, [—%a, %{%s,,o(ﬁ — F2 ) 4(S,1 — S,0C10) (B(FL + F- )+ Cro( Fy — F- )+ SZoL)
2B ,olBF ~ - )+ CoolFy 4 F- ) +(Sy1— SyoCro) By + F- )} 45z ETAS,.
£25,0C10)+ HasELBIS, 41+ 2010 + )+ 25,0C.0t+ 397

E
a3 = E, [260 pl+\/3 =2BSp0S10(F; + F_ 1) +(Cp1S,0S10)(B(F, + F_ 1)

+CrolFy—F- )+ 8% oL)+28,0(8,1 — Sp0Ci1ol(CroL— Fy +F_,)}

+3a;EH{G + 1)Cp1 — 35,0810} + ¥ a3EHC,i(14+3B%(1 +2C3 o)+ 454
—~4p2810(38,1C10 +Sp0(%+%ﬂz))}} ,
1 1 E |
ay; =2 [}rﬂoﬁspo +\%01 Bj{%ﬁspe(tpi" +F2 )+ HF}-F3 (28,1 —35,0C16)—(5,:C1o0
~38,0(5CTo ~ IVB(F; + F- 1)+ Cyo(F; = F_,) +8%oL)} +4a2 EIB{3BS 0+ H(S 0

+25,:C10)} +§£G3E?ﬂ{4spl Cxo(%‘*‘%ﬁz)"*‘spo(% +38%(1 +2C§0)+’lfﬁ4)}J )
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1 E ; .
dy, = E, lj%dospo ﬁ; GBS ol FT 4+ F2 )= 3828 0o BUFy + Fo )4+ C ol Fy — F 1)
] V3
(28,1 =380 C1o)G(FT — F2 ) = BB, + F- )+ CrolFy = Fo )+ 2B(F, + F
= BF —F_ )+ CiolF, + Fo 1)‘*‘513014))(5’,,1 = 58,0(5CT0 — 1)} +3a. ET{ 3P \po
+T(Spo+2splcm)f +3a;E? 4Sp1C10(;%;+%/f2)+'sp0(%+%'ﬁ2(l +2CT) + 384 .
1 E, N . 5 .
a3 = Eji— [)’2{ —3p°S poS 10(Fy Fo)—BSolFy +F. 28,1 —38,0C 10)
+31F’? - F2)(2C, +3850810) = 2810(C oL~ I} + F_ 8,1 Cro—48,0(5C Ty~ 1))
—{Cp i Cio=8p1 810 +§SpOC!OS|O}I + %QazEgﬁ(C,;xCxo‘"Sp1slo)
+ 132 EF G+ 87X HC1Cro—Sp1S10)— 347 S,0810C mf}
ay; = C,+cCy, azy = 0, ayy = —E{S, +c85)),

by =0, by =30 /h/h), by = 3s(ja).

Appendix 111

As the representations shown in Appendices [ and II are unavailable at § = 0, it is
necessary to find the limit of their values for § — 0. Only the limit values different from
those shown in Appendices I and 11 are shown in the following.

2
T —‘3‘E hSpl({l0+ /_;Cl;E +3‘02E1+ a3E )

2
T,= —3%E !1Sm1(ao+ aE| +3a,E7 +Sa, L‘r)
\/

4
dyp = ZSpl(a0+ 3a1E +4a E +§QU3E ) dyy = 0,

5
dy3 = 2E;Cpx(ao+ —a,E, +§azEz+Ta3E4) ay =0,

\

2 1
azs = 3E\Spolao +—5 ,3 a,E\ +3a,E7 +TG3E?) +%E1Splclo(\/3a1El +3a,Ef + a3 EY

RV,

dyy = 0.
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AGcrpaktT—C  uenblo  ananu3a  gedopMauud, BBI3BBAHHOM  BHYTPEHHWM  JIdBIIEHMEM, TOHKHUX
UMIMHAPHYECKHX ODO0JIOMEK W3 MATepHAioB 00/MafaloliMX HEIUHEHHBIMU 3aBUCHMOCTAMU HAMPsKEHHe-
gedopMaiMsa, OINPENE/ISIOTCH OCHOBHBIE YPABHEHHs, MCIONb3ys runotesy Kupxrodda wu BBOIs
napameTp, ykasplBalOWMi 3ddekT cxumaeMocTd MaTepuana. YpPaBHEHWA NPUMEHAIOTCHA [UIS Cllyuas
ONEpPTOil  KOPOTKOH  LMIMHAPMYECKOH OOOMOYKM W3 aNIIOMUHHMETO CIJIaBa, T[0J BHYTPEHHLIM
naBienueM. Jlns  MUCCNENOBAaHMST  BaXHOCTM  NPEANOJOXEHWH, CPAaBHUBAKOTCA  AHANMTHYECKUE
pe3yabTATHl C 3KCNEPUMEHTAIBHBIMU.

AHAMTHYECKUE PE3YJIBTATBI  KOMITOHEHTOB OCEBOM AeOPMALMK  Pa3HATCA 3HAYMTENBHO Ha
BHELIHEH Y BHyTpeHHel moBepxHocTsAX. COKHOE HIMEHEHHEe pacrpeneieHuMs oceBoil nedopmauuu Ha
BHYTPEHHOM [MOBEPXHOCTH TIPU POCTE AABJIEHUS MPUIUCHIBAETCH Hefunneinocty aedopmauuu. Taxoe
HATPaBJieHUE CPABHUBAETCH SICHO MyTEM COOTBETCTBYIOILETO FKCMEPUMEHTA.



